skip to main content


Search for: All records

Creators/Authors contains: "Salekin, Asif"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organoid Intelligence ushers in a new era by seamlessly integrating cutting-edge organoid technology with the power of artificial intelligence. Organoids, three-dimensional miniature organ-like structures cultivated from stem cells, offer an unparalleled opportunity to simulate complex human organ systems in vitro. Through the convergence of organoid technology and AI, researchers gain the means to accelerate discoveries and insights across various disciplines. Artificial intelligence algorithms enable the comprehensive analysis of intricate organoid behaviors, intricate cellular interactions, and dynamic responses to stimuli. This synergy empowers the development of predictive models, precise disease simulations, and personalized medicine approaches, revolutionizing our understanding of human development, disease mechanisms, and therapeutic interventions. Organoid Intelligence holds the promise of reshaping how we perceive in vitro modeling, propelling us toward a future where these advanced systems play a pivotal role in biomedical research and drug development. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Smart speaker voice assistants (VAs) such as Amazon Echo and Google Home have been widely adopted due to their seamless integration with smart home devices and the Internet of Things (IoT) technologies. These VA services raise privacy concerns, especially due to their access to our speech. This work considers one such use case: the unaccountable and unauthorized surveillance of a user's emotion via speech emotion recognition (SER). This paper presents DARE-GP, a solution that creates additive noise to mask users' emotional information while preserving the transcription-relevant portions of their speech. DARE-GP does this by using a constrained genetic programming approach to learn the spectral frequency traits that depict target users' emotional content, and then generating a universal adversarial audio perturbation that provides this privacy protection. Unlike existing works, DARE-GP provides: a) real-time protection of previously unheard utterances, b) against previously unseen black-box SER classifiers, c) while protecting speech transcription, and d) does so in a realistic, acoustic environment. Further, this evasion is robust against defenses employed by a knowledgeable adversary. The evaluations in this work culminate with acoustic evaluations against two off-the-shelf commercial smart speakers using a small-form-factor (raspberry pi) integrated with a wake-word system to evaluate the efficacy of its real-world, real-time deployment.

     
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  3. Stress impacts our physical and mental health as well as our social life. A passive and contactless indoor stress monitoring system can unlock numerous important applications such as workplace productivity assessment, smart homes, and personalized mental health monitoring. While the thermal signatures from a user’s body captured by a thermal camera can provide important information about the “fight-flight” response of the sympathetic and parasympathetic nervous system, relying solely on thermal imaging for training a stress prediction model often lead to overfitting and consequently a suboptimal performance. This paper addresses this challenge by introducing ThermaStrain, a novel co-teaching framework that achieves high-stress prediction performance by transferring knowledge from the wearable modality to the contactless thermal modality. During training, ThermaStrain incorporates a wearable electrodermal activity (EDA) sensor to generate stress-indicative representations from thermal videos, emulating stress-indicative representations from a wearable EDA sensor. During testing, only thermal sensing is used, and stress-indicative patterns from thermal data and emulated EDA representations are extracted to improve stress assessment. The study collected a comprehensive dataset with thermal video and EDA data under various stress conditions and distances. ThermaStrain achieves an F1 score of 0.8293 in binary stress classification, outperforming the thermal-only baseline approach by over 9%. Extensive evaluations highlight ThermaStrain’s effectiveness in recognizing stress-indicative attributes, its adaptability across distances and stress scenarios, real-time executability on edge platforms, its applicability to multi-individual sensing, ability to function on limited visibility and unfamiliar conditions, and the advantages of its co-teaching approach. These evaluations validate ThermaStrain’s fidelity and its potential for enhancing stress assessment. 
    more » « less
    Free, publicly-accessible full text available October 15, 2024
  4. The presented first-of-its-kind study effectively identifies and visualizes the second-by-second pattern differences in the physiological arousal of preschool-age children who do stutter (CWS) and who do not stutter (CWNS) while speaking perceptually fluently in two challenging conditions: speaking in stressful situations and narration. The first condition may affect children's speech due to high arousal; the latter introduces linguistic, cognitive, and communicative demands on speakers. We collected physiological parameters data from 70 children in the two target conditions. First, we adopt a novel modality-wise multiple-instance-learning (MI-MIL) approach to classify CWS vs. CWNS in different conditions effectively. The evaluation of this classifier addresses four critical research questions that align with state-of-the-art speech science studies' interests. Later, we leverage SHAP classifier interpretations to visualize the salient, fine-grain, and temporal physiological parameters unique to CWS at the population/group-level and personalized-level. While group-level identification of distinct patterns would enhance our understanding of stuttering etiology and development, the personalized-level identification would enable remote, continuous, and real-time assessment of stuttering children's physiological arousal, which may lead to personalized, just-in-time interventions, resulting in an improvement in speech fluency. The presented MI-MIL approach is novel, generalizable to different domains, and real-time executable. Finally, comprehensive evaluations are done on multiple datasets, presented framework, and several baselines that identified notable insights on CWSs' physiological arousal during speech production. 
    more » « less
  5. The recent prevalence of machine learning-based techniques and smart device embedded sensors has enabled widespread human-centric sensing applications. However, these applications are vulnerable to false data injection attacks (FDIA) that alter a portion of the victim's sensory signal with forged data comprising a targeted trait. Such a mixture of forged and valid signals successfully deceives the continuous authentication system (CAS) to accept it as an authentic signal. Simultaneously, introducing a targeted trait in the signal misleads human-centric applications to generate specific targeted inference; that may cause adverse outcomes. This paper evaluates the FDIA's deception efficacy on sensor-based authentication and human-centric sensing applications simultaneously using two modalities - accelerometer, blood volume pulse signals. We identify variations of the FDIA such as different forged signal ratios, smoothed and non-smoothed attack samples. Notably, we present a novel attack detection framework named Siamese-MIL that leverages the Siamese neural networks' generalizable discriminative capability and multiple instance learning paradigms through a unique sensor data representation. Our exhaustive evaluation demonstrates Siamese-MIL's real-time execution capability and high efficacy in different attack variations, sensors, and applications. 
    more » « less
  6. The ability of Deep Neural Networks to approximate highly complex functions is the key to their success. This benefit, however, often comes at the cost of a large model size, which challenges their deployment in resource-constrained environments. To limit this issue, pruning techniques can introduce sparsity in the models, but at the cost of accuracy and adversarial robustness. This paper addresses these critical issues and introduces Deadwooding, a novel pruning technique that exploits a Lagrangian Dual method to encourage model sparsity while retaining accuracy and ensuring robustness. The resulting model is shown to significantly outperform the state-of-the-art studies in measures of robustness and accuracy. 
    more » « less
  7. There has been a rise in automated technologies to screen potential job applicants through affective signals captured from video-based interviews. These tools can make the interview process scalable and objective, but they often provide little to no information of how the machine learning model is making crucial decisions that impacts the livelihood of thousands of people. We built an ensemble model – by combining Multiple-Instance-Learning and Language-Modeling based models – that can predict whether an interviewee should be hired or not. Using both model-specific and model-agnostic interpretation techniques, we can decipher the most informative time-segments and features driving the model's decision making. Our analysis also shows that our models are significantly impacted by the beginning and ending portions of the video. Our model achieves 75.3% accuracy in predicting whether an interviewee should be hired on the ETS Job Interview dataset. Our approach can be extended to interpret other video-based affective computing tasks like analyzing sentiment, measuring credibility, or coaching individuals to collaborate more effectively in a team. 
    more » « less
  8. Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages. 
    more » « less